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NATTIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D=-77

UNSTEADY STAGNATION-POINT HEAT TRANSFER

By E. M. Sparrow

SUMMARY

An analysis is made of the unsteady, forced-convection heat trans-
fer at a stagnation point whose surface temperature varies arbitrarily
with time. The flow is steady and laminar. The first step in the anal-
ysis yields the heat-transfer response to a sudden change (step function)
in wall temperature, and this 1s then generalized by a superposition
technique to apply to arbitrary variations. Use of the generalized re-
sults is dillustrated by application to the case where the surface tem-
perature varies linearly with time. Comparison is made between the
unsteady-heat-transfer results of this analysis and those computed under
the assumption of quasi-steady conditions. Numerical results are pre-
sented for a Prandtl number of 0.7 (i.e., gases).

INTRODUCTION

In a number of important technical applications, it is necessary to
compute the forced-convection heat transfer from a surface whose temper-
ature is changing with time. To solve such problems by a direct attack
on the governing differential equations (conservation laws) is normally
an exceedingly formidable task. As a consequence, it has been customary
to simplify matters by supposing that, at each and every moment, there
exists an instantaneous steady state. Under such an assumption, the
steady-state relations for the heat-transfer coefficlent are used in
conjunction with the instantaneous temperature difference to compute a
heat-transfer rate. The phrase quasi-steady is usually applled to de-
scribe the situation in which the transient passes through a sequence
of instantaneous steady states.

In reality, there is always a difference between the actual instan-
taneous heat transfer and the quasi-steady value, the extent of which
depends upon the rapidity of the temperature changes and on the response
characteristics of the flow. During the initial stages of a transient
process or under conditions of very rapid temperature change, it is not
expected that the state will be quasi-steady. While nonquasi-steady



situations can exist in both laminar and turbulent flows, they are more
likely in the laminar case because of the relatively slower response of
such a flow.

The alternative to invoking the quasi-steady assumption is to start
with the governing differential equations and solve for the entire time-
history of the heat-transfer transient from its beginning to its end. A
promising beginning along these lines has been made for internal flow in
tubes and flat ducts; solutions of the unsteady energy equation have
been obtained for the condition of fully developed, steady velocity dis-
tributions, both laminar and turbulent (refs. 1 to 4). For external
flow, which is the area of interest here, the problem is more difficult
and analysis has been confined to computing small deviations from quasi-
steady heat transfer when the state 1s not quite quasi-steady (refs. 5
to 7). Consideration has been given only to laminar flow.

In the present investigation, attention is directed to the unsteady
heat transfer in a laminar stagnation-point flow. The goal is to deter-
mine the complete time-history of the heat-transfer transient associated
with an arbitrary time-variation of the surface temperature. The anal-
ysls is carried out for steady flow of an incompressible, constant-
property fluid with negligible viscous dissipation. Also, the wall tem-
perature is spatially uniform at any instant of time. The first step in
the study is to determine the heat-transfer response to a sudden change
(step function) in wall temperature, starting from an initial condition
of no heat transfer (T, = T ). The step-function result serves as a
fundamental solution, since by a superposition technique it is general-
ized to apply for arbitrary time-variations in wall temperature. The
initial conditions are also generalized to permit the transient to begin
either from a condition of steady-state heat transfer (Tw # Em) as well
as a no-heab-transfer situation (TW = T ). To demonstrate the use of
the generalized results, a heat-transfer computation is carried out for
the case where the wall temperature varies linearly with time, that
is, a ramp function. Comparison is made between the unsteady-heat~
transfer results of the present theory and those computed under the
quasi-steady assumption. In the final section of the report, a proce-
dure is discussed for estimating unsteady heat transfer under conditions
of variable properties and viscous dissipation.

Although the theoretical development may apply to any Prandtl num~
ber Pr, the numerical computations have been carried out for Pr = 0.7
(i.e., gases).
SYMBOLS
A¥ proportionality constant, see eq. (28)

specific heat at constant pressure

»
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T¥

heat-transfer coefficient, qf/(T, - T,)
thermal conductivity

Prandtl number, cpu/k

heat-transfer rate per unit area at surface
static temperature

time

dummy integration variable

free-stream velocity

velocity component in x-direction
proportionality constant, see eq. (3b)
velocity component in y-direction
coordinate measuring distance along surface
coordinate measuring distance normal to surface
thermal diffusivity, k/pcP

thermal boundary-layer thickness

velocity boundary-layer thickness
dimensionless y-coordinate, y/8

Pohlhausen parameter, Bzul/v

absolute viscosity

kinematic viscosity

dunmy integration variable

density

dimensionless time, uyt

dummy integration variable

dimensionless boundary-layer thickness, A/S




Subscripts:

inst instantaneocus
as quasi-steady
ss steady state
W surface

0 free stream
0 at time O

T at time T

7-0.855 at time T - 0.855
T* function of ¥

T-7¥ function of T - T¥

STEP CHANGE IN WALL TEMPERATURE
Analysis

The starting point for this study of the transient heat-transfer
response tc a step change in wall temperature is the comnservation-of-
energy principle. The mathematical stabtement of this law appropriate
to unsteady heat transfer in a constant-property, incompressible,
laminar-boundary-layer flow with negligible viscous dissipation is

3 3 d e
5% +u 3% + Vv 3% = a-g—% (1)
y

Integrating with respect to y gives the over-all energy balance

B/A S p gy 4 O Au _ =_a(a'r>
% (T Tm)y+-5}-<[ (T - T,)dy 5 ). o (2)

where A is the thickness of the thermal boundary layer. This inte-
grated energy equation will now be used in determining the unsteady tem~
perature distribution and heat transfer in a stagnation-point flow. Con-
sideration will be given here to the situation where the transient begins
from an equilibrium condition where there is no heat transfer (TW = Tw).

v0G-i
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In a later section, generalization will be made to include transients
which begin from an already established steady-state situation (Tw # Tw).

In order to attack equation (2), it is first necessary to know the
distribution of the velocity u across the boundary layer. A conse-
quence of the constancy of the fluid properties is that the velocity
distribution is not influenced by the temperature problem, and, as a
result, the usual steady-state solution for stagnation-point boundary-
layer flow can be used here. An excellent polynomial representation
for u, derived by the Kérmén-Pohlhausen method (ref. 8), takes the fol-
lowing form:

4,2 3
=en-2n 4t + g [n(l-n)] (3a)

| F

where

n= Y/S: Uy, = WX, A= Szul/v (Sb)

The velocity boundary-layer thickness is denoted by ©, while A 1s the
Pohlhausen parameter and u; 1is a proportionality constant. For

stagnation-point flow, reference 8 gives

A = 7.052 so that & = (7.052 v/ul)l/2 (3c)

Not only is equation (3a) a good representation within the velocity
boundary layer (i.e., for y < 8); but it also serves well for a range
outside the velocity boundary layer, where u/U& is supposed to be
unity. For example, at y/8 = 1.1, equation (3a) gives u/U, = 1.002;
while, at y/B = 1.18, which represents the largest value of interest
here, equation (3a) gives 1.0l. Finally, it may be worthwhile to re-
iterate the well-established fact that the velocity boundary-layer thick-
ness for a stagnation-point flow is independent of x, as is seen from
equation (3c).

Thus, with an accurate velocity distribution available, consldera-
tion may now be given to solving equation (2). This integral equation
may be attacked by writing the temperature distribution as a polynomial
which satisfies the essential boundary conditions:

o =1 -3 T Ea (4)
v e 0<y<a

The thermal boundary-layer thickness A is an unknown fungtion of time
but is independent of x since Tw is spatially uniform. The

lfhis will also be true when T, - T ™ x" in a stagnation-point
flow.




dependence of A upon time will be determined by satisfying the conser-
vation of energy equation (2). When equations (3) and (4) are introduced
into equation (2) and the integrations are carried out, there results the
following first-order ordinary differential equation for A:

3 oaa AP0 ) a3 At (s, ),
8u, dt 8 \5 60 62 48 53 70 280

1
_Ai 1 A _ 3y i (5)
ﬁﬁ'wO"BmwlA

To complete the statement of the problem, it is necessary to give
the initial condition on A. For the situation where the transient be-
gins from a condition of no heat transfer, all the fluid initially pos-

sesses the temperature T, and, as a result,

A=0 at t=0 (8)

By using equation (3c), u; may be eliminated in favor of &, and

A may be evaluated as 7.052. For computational convenience, new vari-
ables ¢ and T are introduced by the definitions

@ = A/B T=ut (7)

and it is noted that, since © is constant, the time variations of ©
and A are identical. With these modifications and using the value of
0.7 for the Prandtl number (gases), equation (5) becomes

- = i d¢4 . = 0.00584444 dt (8)
P° - 14.9202 9% + 67.0343 @~ - 144.882 ¢° + 138.646

with the boundary condition

p(0) = 0 (9)

Once equation (8) has been solved for @, A is known, and the temper-
ature distribution (4) may be used for carrying out the heat-transfer
computation.

It is possible to obtain a closed-form analytical solution of equa-
tion (8) by using a partial fraction expansion. The first step is to
find the six roots of the polynomial which appears in the denominator.
With these, and with conslderable algebraic manipulation as outlined in
the appendix, equation (8) can be written as

70S~H



0.000212295  0.00399094 0.00305397 ¢ - 0.0107341 +
¢ - 9.44638 ¢ - 1.17705 CPZ - 5.37067 ¢ + 15.2053

0.000729679 @ - 0.00218670
9% + 1.07320 @ + 0.820075

) dp = 0.00584444 4t (10)

Inspection of the left-hand side of this equation shows that all terms
lead to elementary integrals. Carrying out the integration and imposing
the boundary condition (9) provide the following relation between ¢

and T (i.e., between A and 1t):

T = -0.0363243 1n(9—~‘—4—4§-38—) + 0.683717 ln(—-——————l'l7705 cp) +

E-504

9.44638 ~ ¢ 1.17705 -

2
0.261271 1n<°P - 5.37067 @ + 15.2053) .

15.2053

2 4 1.073200 + O.820075> .

P
0.0624250 1n< 0.820075

-1(5.37067 - 29 -1
0.153295[ban ( T )- tan 0.949751] -

-1{2p + 1.07320 -1
O.60474l|:ta.n < T I505G )- tan 0.735591] (11)

Equation (11) provides the dimensionless time T at which a given dimen-
sionless thickness ¢ is achieved during the course of development of
the thermal boundary layer. A plot, based on equation (11), showing the
growth of the thermal boundary layer is presented as the solid curve in
figure 1. Certain interesting properties of the solution are discussed
below.

Pirst, at very early times, when ¢ 1s exceedingly small (i.e.,
A << 8), it would be expected that heat conduction would be relatively
very important compared to energy convection. This intuitive feeling
is supported by equation (8), which shows that the conductive term -
the constant in the denominator - dominates over all the other terms
when ¢ is small. So, for small times, equation (8) becomes

¢ do _
TX5 g = 0-00584444 dt

from which it follows that

¢ = 1.27305 1/ 2 (12)




This asymptote 1s plotted as a straight dotted line on figure 1. TFor
all T < 0.145, the dotted line agrees with the solid curve (exact
solution of eq. (8)) to within 2 percent or better, the deviation be-
coming smaller as T decreases.

At the other extreme, it is expected that, after a long time has
passed following the application of the step jump in wall temperature,
a steady-state heat-transfer gituation will be established. The steady-
state solution is obtained by setting dA/dt = 0 1n equation (5) or,
slternately, setting d9/dt = O in equation (8). From this, it is
found that

st = 1.17705 (13)

Inspection of the transient solution (eq. (11)) indicates that the steady
state 1s approached asymptotically as time grows larger and larger. How-
ever, all practical effects of the transient (e.g., all significant heat-
transfer variations) are over in a finite time.

Thus, with this solution for ¢ (and hence A), the temperature
distribution (eq. (4)) is known and attention can now be turned to the
computation of the heat transfer.

Heat-Transfer Results for a Step Change

The instantaneous heat flux at the surface may be calculated by
applying Fourier's law:
q = 4;@2) (14)

By utilizing the temperature distribution (eq. (4)) and introducing di-
mensionless variables, the expression for q becomes

=3 - 1
q_E.E(TW—TOO)—[%%(TW—Tw)]E (15)
q(V/ul)l/2 0.5649

x(T, -T) @ (15a)

The heat transfer is seen to depend inversely on ¢@; and, as a conse-
quence, q achieves very high values immediately following the step jump
and then decreases monotonically with time.

P0s5-H




E-504

CC-2

A convenient representation of the heat transfer may be achieved
by introducing the steady-state results. By noting that ¢, = 1.17705,

equation (15a) yields

qss(v/ul)l/z

= 0.4799 (16)
k(T - T)

Then, the ratio of this equation with (15a) leads to the simple form

Q. _ 1.177 (17)

This quotient of the instantaneous to the steady-state heat trans-
fer has been plotted as a function of time in figure 2 by making use of
the previously determined values of ¢@. As expected, there are very
high heat-transfer rates at early times since the thermal boundary layer
igs thin. An analytical representation appropriate to early times may be
obtained by utilizing the asymptotic expression (eq. (12)) for ¢. With
this, equation (17) becomes

g _ 0.9246
des /2 (18)

This result, plotted as a straight dotted line on figure 2, is correct
to within 2 percent when T = 0.145 and becomes increasingly accurate
as T decreases. For large times, the heat transfer approaches the
steady-state conditlion asymptotically. However, a practical measure of
the duration of the transient can be obtained from the time required for
q to approach to within 5 percent of its steady-state value. From fig-
ure 2, the S-percent time is found to be

1.7
15% = 1.7 or tS% = —GE (19)

An informetive rephrasing of equation (19) may be achieved by introduc-
ing U_ from equation (3b). Then,

=
U

(2]

t5% = 1.7 (19a)
Now, x/Ug is the time required for fluid moving at velocity U, to
traverse the distance x. Although, as expected, t5 is somewhat in
excess of x/U@, these times are still of the same order of magnitude.

A similar result has also been found for thermal step functions in
laminar and turbulent pipe flows (see refs. 3 and 4).
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The step function is the most rapid type of wall temperature
change, and it would not be expected that quasi-steady conditions would
prevail throughout the transient period. However, as a matter of curi-
osity, the quasi-steady heat transfer will be computed. This computa-
tion is carried out by using the steady-state relation for the heat-
transfer coefficient in conjunction with the instantaneous temperature
difference. From its definition hgg = q /(T - T,), the steady-state

heat-transfer coefficient may be obtained from equation (16) as

h.. = 0.4799 k (20)

ss (v/ul)l72

With this, the quasi-steady heat transfer may be determined by evaluat-
ing the expression qqs = hss(Tw - In)inst’ from which it follows that

k

dgs = 0.4799 (—-/-WE (T, - Tm)inSJC (21)
4

vV,

For the step change in wall temperature, T, - T, 1s constant throughout
the transient period and, as a consequence, the quasi-steady heat trans-
fer is identical to the steady-state heat transfer. Hence, for the step

Jump, the ordinate of figure 2 also represents the ratio q/qqs. It is

easily seen that quasi-steady conditlions are not achieved during the
transient period.

Before leaving the step-function case, it is of interest to inquire
ags to whether comparisons are possible between the present results and
those of previous analyses. Inasmuch as there has been no prior study
of the transient period, such comparisons are only possible at the lim-
its of small and large times. For exceedingly small values of time, it
has been already noted that heat conductlon dominates over convection.
For this condition, the heat-transfer prediction of the present analysis
is given by equation (18), which may be rephrased as

0.4437

Sen 9 T - i (22)

The exact solution (ref. 9) for the heat-transfer response of a solid
body (no velocities) to a step change in surface temperature may be
phrased in a form identical to equation (22), with the numerical con-
stant taking a value of 0.472035 for Pr = 0.7. Thus, the present pre-
diction lies 6 percent low for this early period. At the other extrem-~
1ty of time, for the steady-state condition, the heat-transfer result of
reference 10 based on a numerical solution of the differential energy

equationz takes the same form as equation (16) herein, except that the

2Mhis is in contradistinction to the integrated energy equation
used here. :

70S-1
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constant is 0.4958. 8o, the current prediction is low by about 3 per-
cent. This level of accuracy is sufficient for almost all applications.

GENERALIZATION TO ARBITRARY TIME-DEPENDENT WALL TEMPERATURE

The linearity of the energy equation permits the use of a super-
position technique to generalize the step-function results. Consider a
process in which there is no heat transfer (i.e., T = T ) for 1t < t¥;

and then, at t = t¥, a step change in wall temperature dT, is applied.

The heat-transfer response to such a process may be computed from equa-
tion (15) to be

1
~-t*

aq = 2 x dr, & t > t* (23)
6

where the notation A%-t* is used to indicate that A 1s a function of

t - t¥ rather than of t (since the transient starts at t = t¥ in-
stead of t = 0). But, as may be seen by referring to figure 3, this
small step may be considered as an elementary part of an arbitrarily
variable wall tempersture. The heat-transfer response to such a time-
dependent wall temperature is found by integrating equation (23), which
glves

daT *
. q = % k -—-Al’ri- (243.)
t-t¥
or
T
(V/ul)l/z dTW T*
q = = 0.5649 -75—L—- (24p)

where dimensionless variables have been introduced in equation (24b).
In these equations, Tw 1s taken as a function of the dummy integration

variable ¥ (or t¥), and, hence, a second subscript is used. The

notation @T % indicates that ¢ 1s to be regarded as a function of

T - T%; and, for the purposes of the integration, the abscissa variable
of figure 1 ought to be replaced by T - T¥. As written, equations
(24a) and (24b) apply to any temperature variation, including step

changes.3 However, 1f there are no finite step changes in Tw, equa~
tion (24b) becomes

3Ma.thema,tica.lly speaking, the integrals are Stiljes integrals.




1z

) T
alv/uy)* aT . _yfaT*
1 W, T
——5—— = 0.5649 —CFL_—— ar¥ (24c)
0 T-T¥

To illustrate the use of these expressions, an example will be given in
a later section.

Thus far, consideration has been given to transients which begin
from a condition of no heat transfer (i.e., T = T,). The situation
where the transient begins from an already established steady-state heat
transfer qq is also handled by superposition. By incorporating g,
into equation (24a), it follows that

v aT
*
Q=g+ % k / —AKLJG— (25a)
o t-t¥*
or
/2 T
q_(V/U.l) / (TW = Too)o dTW *
— 7 —— = 0.5649 A —CP——L— (25b)
O T"‘T*

Equations (24) and (25) give, at any time T, the heat transfer
associabed with a temperature variation over the interval from T =0
to T = T. On the other hand, the quasi-steady heat-transfer, predic-
tion at time T is computed from equation (21) as

k

qqs = 0.4799 —(-'1//—11—)-]7-2- (TW - Too)'r (26)
1

With this, and with equation (25b), the ratio of the instantaneocus to
the quasi-steady heat transfer takes the form

(T, - T,) T 4T

i 177 *
= T )O + 1 l-lT ) @w!T (27)
q-q_s W 0/ o ( W o/ T o) T=T%

This expression may be used to determine those times during the tran-
sient period at which the state is essentially quasi-steady (e.g.,
within 5 or 2 percent).

F0OS—d
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HEAT-TRANSFER RESULTS FOR LINEARLY VARYING WALL TEMFPERATURE

To illustrate the use of the generalized heat-transfer resulfs,
consideration is given to the case of a wall temperature which varies
linearly with time, that is,

T, - T, = A¥t¥ (28)

Here T* has been used as the running time variable in anticipation

of application to equation (25b). Differentiation of equation (28)
gives dT,_ .y = A¥ dt¥. With this and (T, - T,) o = 0, equation (251v)
)

becomes
1/2 g
q(v/u ) *
kl = 0.5649 A* / dr (29)
0

P

For the integration, it is convenient to introduce a new dummy variable
¢ Dby the definition: & = T - 7%, from which it follows that

q(V/ul)l/2 i at
———————— = 0.5649 A¥ == (29a)

k P
0 £

The notation Qg means that as a consequence of the transformation, @

is now a function of the single variable £. For the purposes of inte-
gration, both figure 2 and equation (11) directly give the required re-
lation between ¢ and the running integration variable E.

The variation of the heat transfer with time, obtained from inte-
grating equation (29a), is presented as the solid curve in figure 4.
At very early times, the heat transfer is small because the driving
force T, - T, is also small. The heat transfer increases monotoni-
cally with time because of the sustained increase of T, - T . A
steady-state heat-transfer condition is never achieved.

It is possible to derive simple asymptotic expressions for the re-
sults of figure 4. At early times, the variation of ¢ with & 1is
given by equation (12). Utilizing this, it is found from equation (29a)
that

alv/u) )

_ 1/2
_—k._AT_— = 0.8874 7

(30)
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A plot of this relation is given as the dotted straight line in figure
4. It is found that, for T = 0.392, the deviation between the dotted
line and the solid curve 1s 2 percent; and, as time decreases, this
deviation diminishes. At the other extreme, for large times, ¢ Dbecomes
essentially constant. Then, in equation (29a), the integral can be con-
veniently subdivided into two parts in the following way:

Td T'Tl
cp YT
0

4
where 17y, the time at which ¢ = 1.177, is found from equation (11) to

be 6.522. The integral from O to T; has been carried out numerically

and has the value 6.459. With this information, equation (29a) yields
the heat-transfer asymptote for large times as follows:

Q(V/ul)l/z

3 = 0.5187 + 0.4799 T (31)

This equation is plotted as the dashed line in figure 4. At T = 1.45,
equation (31) is good to within 2 percent; and, with increasing time,
the deviation becomes progressively smaller. It is interesting to ob-
serve that the two asymptotic curves form a rather tight bracket around
the solid curve which is the exact representation of equation (29a).

It is of interest to compare the quasi-steady heat-transfer predic-
tions with those of figure 4. The general expression for q/qqs as
given by equation (27) may be specialized to the following form for the

particular case now under considerationt

T
_g_=1.177/ %g (32)
dqs b e

The results obtained by integrating equation (32) have been plotted in
figure 5. As expected, the greatest deviations between the Instantan-
eous q and the quasi-steady value occur at the beginning of the tran-
sient. As time proceeds, quasi-steady conditions are approached more
and more closely. Also shown in figure 5 are asymptotic lines appro-
priate to small and large values of time. The equations of these lines
are as follows:

1.849
Small times: - (33a)
qqs T172

4This is sufficlently close to the steady-state value of 1.17705 to
provide four figure results for the heat transfer.

y0s-d
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Large timest: L -1+ 1'281

S

(33b)

The range of applicability is the same as that for the asymptotic lines
of figure 4. From equation (33b), the time can be determined when essen-
tially quasi-steady conditions are achieved. For most practical pur-
poses, the state can be considered quasi-steady when q/qqs = 1.05. This
condition is achieved when

=
U

oo

TS% = 21.65 or tS% = 21.65 (34)

Comparison with equation (19) shows that a much longer time is required
to achieve quasi-steady conditions during a linear temperature rise than
after a step jump. This is not surprising since in the former case the
wall boundary condition is continually changing with time and requires

e continuous pursuit by the flow; while, in the latter case, the boundary
condition changes abruptly and thereafter remains constant.

PROCEDURE FOR RAPID CALCULATIONS

By inspection of heat-transfer relations (24) to (27), it is seen
that computations for the case of an arbitrary time-dependent wall tem-
perature require the knowledge of the boundary-layer thickness ¢ for
the step-function case. It is clear that these heat-transfer computa-
tions could be shortened if & simple analytical expression for ¢ were
available. A representation which immediately suggests itself is the
dotted and dashed envelope curve of figure 1, the mathematical descrip-
tion of which is

|

¢
(35a)

1.27305 /2 0< 7 <0.855 }

® = 1.17705 T > 0.855

In using these expressions, it must be realized that some sacrifice in
precision is being made in order to achieve computational ease and speed.
In terms of T - 1% as an independent variable, equation (35a) becomes

¢

1/2
ek 1.27303(1 - T¥) / 0<7T-7%<0.855
(35b)

) 1.17705 T - ™% > 0.855

T-T¥%
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With this approximation for ¢, the heat-transfer equation (251b)
corresponding to an arbitrarily prescribed variation in Tw becomes

tr/a)? s(z. - ) e
L 0.479 =T )+ 0.443 ——————L——77~
q k W =0 [ (7 - T*)l 2 (36a)

0< T<0.855 b
3
tS
Q—fF— = 0.4799(T, - T, ). o.g55 + O-4437 177
t-0.855 (T = ™) (36D)
T > 0.855

where the notation (T -7 )T~O 855 indicates that TW - T 1s eval-

uated at T*¥ = T - 0.855. In deriving equation (36b) from (25b), cog-

nizance has been taken of the fact that ¢ is constant as 1% ranges "
from O to T - 0.855. The ratio of the instantaneous to the quasi-

steady heat transfer as given by equation (27) may also be modified by

introducing the simplified expressions for ¢, which leads to the form -
T
q (Ty - Tw)g , . 0.9246 j/. ATy ¥
%Ge Ty -T) (T, - T.), A (1 - w%)1/2
(37a)
0<1<0.85
q (Ty = T, g55 T o 9246
q-q_s (TW - Too).r - T ) -0. 855 ’I' - T*)l 2
(370)

T > 0.855

To illustrate the application of these simplified heat-transfer
relationships, attention is directed to the case of a linearly varying
wall temperature as described by equation (28). By noting that

- *
aT, ox = A% dr¥

(T, - L), =0 (Ty = T)ro.gs5 = A¥(7 - 0.855)

(38) .




CC-3

]
~J

it is found by direct integration of equation (36) that

Q(V/ul)l/z 1/

= = 0.8874 7 0< T<0.855 (39a)
a(v/u )Y/ ?
= = 0.4799 T + 0.4103 T > 0.855 (39p)

These heat-transfer results are plotted in figure 6 as a dot-dashed
curve., Also shown there for comparison purposes is a solid curve repre-
senting the results of the more complete calculation which has already
been described in a previous section of the report and in figure 4. It
is seen that the performance of the rapid computational procedure is
quite satisfactory; the maximum deviation from the solid curve is only

7 percent, while the deviations—over most of the range are much smaller.
The relationship between the instantaneous and quasi-steady heat trans-
fer for the linearly varying wall temperature may be computed from equa-
tion (37) after introducing (38). By direct integration there is
obtained

1.849
J'-=--W'§ 0<T1<0.855 (40a)
s T
4o 4 0e8548 T > 0.855 (40b)

s t

There is no need to plot these results since their percentage deviations
from the results of the complete computation are identical to those al-
ready noted with relation ta the heat-transfer results of figure 6.

From equation (40b), the time at which q/qqs = 1.05 is found to be

Ty = 17.1 or tgg = 17.1 & (41)

=]

This is in reasonable agreement with the wvalue of 21.65 previously
obtained.

The satisfactory performance of the rapid computation procedure for
the case of the linearly varying wall temperature helps to establish con-
fidence in its accuracy. But, even with this, 1t is worthwhile to apply
it with caution in situations where the time-dependence of T, 1s very
irregular.
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APPLICATION OF RESULTS
Application to Unsteady Heating or Cooling of a Wall

Now, attention 1s turned to demonstrating the facllity with which
the results may be applied. In many situations, the time-variation of
the wall temperature might not be prescribed. Rather, it would be de-
termined by the balance between the rate of convectlve heat transfer to
the wall and the capacity of the weall to &absorb this energy. For the
simplest situation of high-conductivity wall material and no heat losses,
the temperature rise of the wall is glven by

d
ETE = bq (42)
where b includes the wall specific heat, density, and thickness.
Changing notation from t to <T¥ and inserting in equation (25b) yield
an integral equation for g, solution of which would provide the varia-
tion of the heat-transfer rate with time. Then, the varlation of the
wall temperature could be found from equation (42).

Further complications could be introduced to account for wall con-
duction, heat losses, and so forth. However, these details need not be
considered here.

Application to Variable Properties and Viscous Dissipation

The ansalysis given in this report has been built on the supposition
of an incompressible, constant-property, nondissipative flow. It is de-
sirable to have some way of determining the heat transfer when compres-
sibility, et cetera are present. To make a complete analysis of this
problem would be a very formldable task. However, on the basis of what
has been done here, 1t is possible to offer a simple approach for obtain-
ing a first estimate of the heat transfer to these more complicated
flows. The procedure is as follows: By using the given wall temperature

information, the ratic qqs is computed from equation (27) as a func-

tion of time. Then, the quasi-steady heat transfer would be evaluated
not from equation (26), but rather by applying the steady-state heat-
Transfer coefficients appropriate to the compressible, variable-property,
dissipative problem. Then, with this value of s in conjunction with
the result of equation (27), it is expected that a falr estimate of g
could be obtained.

Lewis Research Center
National Aeronautics and Space Administration
Cleveland, Ohio, July 22, 1959
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APPENDIX - SOLUTION OF EQUATION (8) BY PARTTAL FRACTIONS

The first step in attacking equation (8) is to determine the six
factors of the polynomial which appears in the denominator, the roots
of which are

Py = 9.44638 ¢, = 1.17705
Pz 4 = 2.68534 & 2.82741 i (A1)
2
P. . = -0.536598 £ 0.729478 i
5,6

With these, the left-hand side of the equation can be written as

¢ do _ A B
@ -9)(@ - 95) « ¢ o (@ ~9g) [(¢ ~ %) " o - ) e ®

-ZCP—:E—‘-EE)-] do (AZ)

where a partial fraction expansion has been used to obtain the last form.
The constants A, B, . . ., F are found by the usual methods. To illus-
trate, attention is focused on finding A. First, equation (A2) is mul-

tiplied through by ¢ - P 5 which gives

P P -9 ¢ - P
=A4+B~———4+ .. .4 F ——= (A3
(@ -0 )(@ ~9z) - -« (9 - 95) ? - g IR )

Now, equations (A2) and (A3) must apply for all values of ¢ and, in
particular, for ¢ = ¢;. For this choice, equation (A3) becomes
P

A=—((pl "@2)@1"@3) ¢ e (CPl "CP67

(a4)

which is an arithmetic expression for A. The constants B, C, . . .,
F are determined in an analogous fashion.

The end result of these computations is exhibited in equation (10).
Since the complex roots are conjugates, the partial fraction expansion
may be simplified by combining terms. In this way, the @ - ¢z and

® - ¢, terms of the expansion combine to form the third term of equa-~

tion (10); while @ - 5 and @ - 9 give rise to the fourth term of
that equation.
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Figure 3. - Representation of arbitrary time varia-
tion in wall temperature.
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